Nitrogen Removal Efficiency and Microbial Community Analysis of a High-Efficiency Honeycomb Fixed-Bed Bioreactor

Author:

Xu Jie,Zhu Chao,Liu Yi,Lv Guanghui,Tian Changyan,Ma Hongrui

Abstract

Based on the concept of microbial community multi-processing in integrated spatial bacterial succession (ISBS), this study constructs a highly efficient cellular fixed-bed bioreactor that follows the growth of biological flora in the wastewater treatment process. The reactor is organically partitioned based on synergistic laws and in accordance with environmental and microbial metabolic changes, and sewage is subjected to unitized and specialized biological treatment under direct current conditions. The results show that the ISBS reactor exhibits stable nitrogen removal performance under a low-carbon source. Compared with traditional sewage biochemical treatment technology, the microbial concentration is increased by 2–3 times and even up to 12 times, and the ammonia nitrogen removal rate is maintained at 99%. The removal rate reaches 90% (hydraulic retention time of 14 h). High-throughput sequencing analysis based on 16S rDNA reveals the microbial community structure succession at different depths of the same section of the reactor. The microbial community is rich under the influence of environmental factors and exhibits different responses. The intervals vary. An analysis of the microbial community function explains why the ISBS reactor has high nitrogen removal efficiency.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3