Advancements in Buoy Wave Data Processing through the Application of the Sage–Husa Adaptive Kalman Filtering Algorithm

Author:

Jiang Sha12,Chen Yonghua1,Liu Qingkui1

Affiliation:

1. Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road No. 7, Shinan District, Qingdao 266071, China

2. University of Chinese Academy of Sciences, Jingjia Road, Yanqi Lake Campus, Huairou District, Beijing 100049, China

Abstract

In this paper, we propose a combined filtering method rooted in the application of the Sage–Husa Adaptive Kalman filtering, designed specifically to process wave sensor data. This methodology aims to boost the measurement precision and real-time performance of wave parameters. (1) This study delineates the basic principles of the Kalman filter. (2) We discuss in detail the methodology for analyzing wave parameters from the collected wave acceleration data, and deeply study the key issues that may arise during this process. (3) To evaluate the efficacy of the Kalman filter, we have designed a simulation comparison encompassing various filtering algorithms. The results show that the Sage–Husa Adaptive Kalman Composite filter demonstrates superior performance in processing wave sensor data. (4) Additionally, in Chapter 5, we designed a turntable experiment capable of simulating the sinusoidal motion of waves and carried out a detailed errors analysis associated with the Kalman filter, to facilitate a deep understanding of potential problems that may be encountered in practical application, and their solutions. (5) Finally, the results reveal that the Sage–Husa Adaptive Kalman Composite filter improved the accuracy of effective wave height by 48.72% and the precision of effective wave period by 23.33% compared to traditional bandpass filter results.

Funder

the National Key Research and Development Program

Financially supported by Laoshan Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3