Characteristics of Evapotranspiration of Urban Lawns in a Sub-Tropical Megacity and Its Measurement by the ‘Three Temperature Model + Infrared Remote Sensing’ Method

Author:

Qiu Guoyu,Tan Shenglin,Wang Yue,Yu Xiaohui,Yan ChunhuaORCID

Abstract

Evapotranspiration (ET) is one of the most important factors in urban water and energy regimes. Because of the extremely high spatial heterogeneity of urban area, accurately measuring ET using conventional methods remains a challenge due to their fetch requirements and low spatial resolution. The goals of this study were to investigate the characteristics of urban ET and its main influencing factors and subsequently to improve a fetch-free, high spatial resolution method for urban ET estimation. The Bowen ratio and the ‘three-temperature model (3T model) + infrared remote sensing (RS)’ methods were used for these purposes. The results of this study are listed in the following lines. (1) Urban ET is mainly affected by solar radiation and the effects of air humidity, wind velocity, and air temperature are very weak; (2) The average daily, monthly, and annual ETs of the urban lawn are 2.70, 60–100, and 990 mm, respectively, which are obvious compared with other landscapes; (3) The ratio of ET to precipitation is 0.65 in the wet season and 2.6 in the dry season, indicating that most of the precipitation is evaporated; (4) The fetch-free approach of ‘3T model + infrared RS’ is verified to be an accurate method for measuring urban ET and it agrees well with the Bowen ratio method (R2 is over 0.93 and the root mean square error is less than 0.04 mm h−1); (5) The spatial heterogeneity of urban ET can also be accurately estimated by the proposed approach. These results are helpful for improving the accuracy of ET estimation in urban areas and are useful for urban water and environmental planning and management.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3