Abstract
Canonical extrinsic representations for non-rigid shapes with different poses are preferable in many computer graphics applications, such as shape correspondence and retrieval. The main reason for this is that they give a pose invariant signature for those jobs, which significantly decreases the difficulty caused by various poses. Existing methods based on multidimentional scaling (MDS) always result in significant geometric distortions. In this paper, we present a novel shape unfolding algorithm, which deforms any given 3D shape into a canonical pose that is invariant to non-rigid transformations. The proposed method can effectively preserve the local structure of a given 3D model with the regularization of local rigid transform energy based on the shape deformation technique, and largely reduce geometric distortion. Our algorithm is quite simple and only needs to solve two linear systems during alternate iteration processes. The computational efficiency of our method can be improved with parallel computation and the robustness is guaranteed with a cascade strategy. Experimental results demonstrate the enhanced efficacy of our algorithm compared with the state-of-the-art methods on 3D shape unfolding.
Funder
National Natural Science Foundation of China
Jiangxi Science Fund for Distinguished Young Scholar
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献