Tool Wear State Recognition Based on One-Dimensional Convolutional Channel Attention

Author:

Xue Zhongling12,Li Liang2,Chen Ni12,Wu Wentao2,Zou Yuhang2,Yu Nan3

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China

2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

3. Institute of Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh EH8 9BT, UK

Abstract

Tool wear state recognition is an important part of tool condition monitoring (TCM). Online tool wear monitoring can avoid wasteful early tool changes and degraded workpiece quality due to later tool changes. This study incorporated an attention mechanism implemented by one-dimensional convolution in a convolutional neural network for improving the performance of the tool wear recognition model (1DCCA-CNN). The raw multichannel cutting signals were first preprocessed and three time-domain features were extracted to form a new time-domain sequence. CNN was used for deep feature extraction of temporal sequences. A novel 1DCNN-based channel attention mechanism was proposed to weigh the channel dimensions of deep features to enhance important feature channels and capture key features. Compared with the traditional squeeze excitation attention mechanism, 1DCNN can enhance the information interaction between channels. The performance of the model was validated on the PHM2010 public cutting dataset. The excellent performance of the proposed 1DCCA-CNN was verified by the improvement of 4% and 5% compared to the highest level of existing research results on T1 and T3 datasets, respectively.

Funder

Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), Harbin University of Science and Technology

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3