Retrieving Mediterranean Sea Surface Salinity Distribution and Interannual Trends from Multi-Sensor Satellite and In Situ Data

Author:

Sammartino Michela,Aronica SalvatoreORCID,Santoleri RosaliaORCID,Buongiorno Nardelli BrunoORCID

Abstract

Sea surface salinity (SSS) is one of the Essential Climate Variables (ECVs), defined by the Global Climate Observing System (GCOS). Salinity is modified by river discharge, land run-off, precipitation, and evaporation, and it is advected by oceanic currents. In turn, ocean circulation, the water cycle, and biogeochemistry are deeply impacted by salinity variations. The Mediterranean Sea represents a hot spot for the variability of salinity. Despite the ever-increasing number of moorings and floating buoys, in situ SSS estimates have low coverage, hindering the monitoring of SSS patterns. Conversely, satellite sensors provide SSS surface data at high spatial and temporal resolution, complementing the sparseness of in situ datasets. Here, we describe a multidimensional optimal interpolation algorithm, specifically configured to provide a new daily SSS dataset at 1/16° grid resolution, covering the entire Mediterranean Sea (Med L4 SSS). The main improvements in this regional algorithm are: the ingestion of satellite SSS estimates from multiple satellite missions (NASA’s Soil Moisture Active Passive (SMAP), ESA’s Soil Moisture and Ocean Salinity (SMOS) satellites), and a new background (first guess), specifically built to improve coastal reconstructions. The multi-sensor Med L4 SSS fields have been validated against independent in situ SSS samples, collected between 2010–2020. They have also been compared with global weekly Copernicus Marine Environment Monitoring Service (CMEMS) and Barcelona Expert Centre (BEC) regional products, showing an improved performance. Power spectral density analyses demonstrated that the Med L4 SSS field achieves the highest effective spatial resolution, among all the datasets analysed. Even if the time series is relatively short, a clear interannual trend is found, leading to a marked salinification, mostly occurring in the Eastern Mediterranean Sea.

Funder

Copernicus Marine Environment Monitoring Service (CMEMS) Multi-Observation Thematic Assembly Centre

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3