Comparing Methods to Collect and Geolocate Tweets in Great Britain

Author:

Schlosser StephanORCID,Toninelli DanieleORCID,Cameletti MichelaORCID

Abstract

In the era of Big Data, the Internet has become one of the main data sources: Data can be collected for relatively low costs and can be used for a wide range of purposes. To be able to timely support solid decisions in any field, it is essential to increase data production efficiency, data accuracy, and reliability. In this framework, our paper aims at identifying an optimized and flexible method to collect and, at the same time, geolocate social media information over a whole country. In particular, the target of this paper is to compare three alternative methods to collect data from the social media Twitter. This is achieved considering four main comparison criteria: Collection time, dataset size, pre-processing phase load, and geographic distribution. Our findings regarding Great Britain identify one of these methods as the best option, since it is able to collect both the highest number of tweets per hour and the highest percentage of unique tweets per hour. Furthermore, this method reduces the computational effort needed to pre-process the collected tweets (e.g., showing the lowest collection times and the lowest number of duplicates within the geographical areas) and enhances the territorial coverage (if compared to the population distribution). At the same time, the effort required to set up this method is feasible and less prone to the arbitrary decisions of the researcher.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance,Sociology and Political Science,Development

Reference61 articles.

1. Conducting research on the internet—A new era;Hewson;Psychologist,2014

2. Reliable online social network data collection;Abdesslem,2012

3. Big Data, Collection of (Social Media, Harvesting);Liang,2017

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3