Identification of Groundwater Potential Recharge Zones in Flinders Ranges, South Australia Using Remote Sensing, GIS, and MIF Techniques

Author:

Ahmed Alaa,Alrajhi AbdullahORCID,Alquwaizany Abdulaziz S.ORCID

Abstract

In Australia, water resource management is a major environmental, biological, and socio-economic issue, and will be an essential component of future development. The Hawker Area of the central Flinders Ranges, South Australia suffers from a lack of reliable data to help with water resource management and decision making. The present study aimed to delineate and assess groundwater recharge potential (GWRP) zones using an integration between the remote sensing (RS), geographic information system (GIS), and multi-influencing factors (MIF) approaches in the Hawker Area of the Flinders Ranges, South Australia. Many thematic layers such as lithology, drainage density, slope, and lineament density were established in a GIS environment for the purpose of identifying groundwater recharge potential zones. A knowledge base ranking from 1 to 5 was assigned to each individual thematic layer and its categories, depending on each layer’s importance to groundwater recharge potential zones. All of the thematic layers were integrated to create a combined groundwater potential map of the study area using weighting analysis in ArcGIS software. The groundwater potential zones were categorized into three classes, good, moderate, and low. The resulting zones were verified using available water data and showed a relative consistency with the interpretations. The findings of this study indicated that the most effective groundwater potential recharge zones are located where the lineament density is high, the drainage density is low, and the slope is gentle. The least effective areas for groundwater recharge are underlain by shale and siltstone. The results indicated that there were interrelationships between the groundwater recharge potential factors and the general hydrology characteristics scores of the catchment. MIF analysis using GIS mapping techniques proved to be a very useful tool in the evaluation of hydrogeological systems and could enable decision makers to evaluate, better manage, and protect a hydrogeological system using a single platform.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3