Multi-Feature Single Target Robust Tracking Fused with Particle Filter

Author:

Liu CaihongORCID,Ibrayim Mayire,Hamdulla AskarORCID

Abstract

Aiming at the problems of target model drift or loss of target tracking caused by serious deformation, occlusion, fast motion, and out of view of the target in long-term moving target tracking in complex scenes, this paper presents a robust multi-feature single-target tracking algorithm based on a particle filter. The algorithm is based on the correlation filtering framework. First, to extract more accurate target appearance features, in addition to the manual features histogram of oriented gradient features and color histogram features, the depth features from the conv3–4, conv4–4 and conv5–4 convolutional layer outputs in VGGNet-19 are also fused. Secondly, this paper designs a re-detection module of a fusion particle filter for the problem of how to return to accurate tracking after the target tracking fails, so that the algorithm in this paper can maintain high robustness during long-term tracking. Finally, in the adaptive model update stage, the adaptive learning rate update and adaptive filter update are performed to improve the accuracy of target tracking. Extensive experiments are conducted on dataset OTB-2015, dataset OTB-2013, and dataset UAV123. The experimental results show that the proposed multi-feature single-target robust tracking algorithm with fused particle filtering can effectively solve the long-time target tracking problem in complex scenes, while showing more stable and accurate tracking performance.

Funder

Mayire Ibrayim

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral-Spatial Feature Enhancement Algorithm for Nighttime Object Detection and Tracking;Symmetry;2023-02-17

2. OPTICS-Based Passive Tracking Algorithm for High Maneuvering Targets;2022 14th International Conference on Signal Processing Systems (ICSPS);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3