Abstract
With the fast progress in perfect information game problems such as AI chess and AI Go, researchers have turned to imperfect information game problems, including Texas Hold’em and Bridge. Bridge is one of the most challenging card games that have significant research value. Bridge playing is divided into two phases: bidding and playing. This paper focuses on bridge bidding and proposes a bridge bidding service framework using deep neural networks, and supports bidding visualization for the first time. The framework consists of two parts: the bidding model (BM) with a multilayer neural network, and a visualization system. The framework predicts not only reasonable bids from the existing bidding system of humans, but also provides intuitive explanations for decisions to enable human–computer information interaction. Experimental results show that this bidding AI outperforms majority of existing systems.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献