AI Enabled Bridge Bidding Supporting Interactive Visualization

Author:

Zhang XiaoyuORCID,Liu Wei,Lou Linhui,Yang Fangchun

Abstract

With the fast progress in perfect information game problems such as AI chess and AI Go, researchers have turned to imperfect information game problems, including Texas Hold’em and Bridge. Bridge is one of the most challenging card games that have significant research value. Bridge playing is divided into two phases: bidding and playing. This paper focuses on bridge bidding and proposes a bridge bidding service framework using deep neural networks, and supports bidding visualization for the first time. The framework consists of two parts: the bidding model (BM) with a multilayer neural network, and a visualization system. The framework predicts not only reasonable bids from the existing bidding system of humans, but also provides intuitive explanations for decisions to enable human–computer information interaction. Experimental results show that this bidding AI outperforms majority of existing systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved deep Q-Network algorithm for the prediction of non-competitive bidding in Bridge Game;Proceedings of the 2024 5th International Conference on Computing, Networks and Internet of Things;2024-05-24

2. Analysis of selected reinforcement learning applications in contract bridge;Computer Science and Mathematical Modelling;2023-10-30

3. An enhanced searching strategy for multi-agent mobile applications;China Communications;2022-11

4. The Synergy of Double Neural Networks for Bridge Bidding;Mathematics;2022-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3