Author:
Xing Luqi,Li Xuejian,Du Huaqiang,Zhou Guomo,Mao Fangjie,Liu Tengyan,Zheng Junlong,Dong Luofan,Zhang Meng,Han Ning,Xu Xiaojun,Fan Weiliang,Zhu Di’en
Abstract
The highly accurate multiresolution leaf area index (LAI) is an important parameter for carbon cycle simulation for bamboo forests at different scales. However, current LAI products have discontinuous resolution with 1 km mostly, that makes it difficult to accurately quantify the spatiotemporal evolution of carbon cycle at different resolutions. Thus, this study used MODIS LAI product (MOD15A2) and MODIS reflectance data (MOD09Q1) of Moso bamboo forest (MBF) from 2015, and it adopted a hierarchical Bayesian network (HBN) algorithm coupled with a dynamic LAI model and the PROSAIL model to obtain high-precision LAI data at multiresolution (i.e., 1000, 500, and 250 m). The results showed the LAIs assimilated using the HBN at the three resolutions corresponded with the actual growth trend of the MBF and correlated significantly with the observed LAI with a determination coefficient (R2) value of > 0.80. The highest-precision assimilated LAI was obtained at 1000-m resolution with R2 values of 0.91. The LAI assimilated using the HBN algorithm achieved better accuracy than the MODIS LAI with increases in the R2 value of 2.7 times and decreases in the root mean square error of 87.8%. Therefore, the HBN algorithm applied in this study can effectively obtain highly accurate multiresolution LAI time series data for bamboo forest.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献