Time Series Analysis of Land Surface Temperatures in 20 Earthquake Cases Worldwide

Author:

Pavlidou Efthymia,van der Meijde Mark,van der Werff Harald,Hecker ChristophORCID

Abstract

Earthquakes are reported to be preceded by anomalous increases in satellite-recorded thermal emissions, but published results are often contradicting and/or limited to short periods and areas around the earthquake. We apply a methodology that allows to detect subtle, localized spatio-temporal fluctuations in hyper-temporal, geostationary-based land surface temperature (LST) data. We study 10 areas worldwide, covering 20 large (Mw > 5.5) and shallow (<35 km) land-based earthquakes. We compare years and locations with and without earthquake, and we statistically evaluate our findings with respect to distance from epicentra and temporal coincidence with earthquakes. We detect anomalies throughout the duration of all datasets, at various distances from the earthquake, and in years with and without earthquake alike. We find no distinct repeated patterns in the case of earthquakes that happen in the same region in different years. We conclude that earthquakes do not have a significant effect on detected LST anomalies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

1. From visual comparison to Robust Satellite Techniques: 30 years of thermal infrared satellite data analyses for the study of earthquake preparation phases;Tramutoli;Boll. Geofis. Teor. Appl.,2015

2. A study on the Abruzzo 6 April 2009 earthquake by applying the RST approach to 15 years of AVHRR TIR observations

3. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003

4. Robust satellite techniques for remote sensing of seismically active areas

5. Thermal anomaly from NOAA data for the Nepal earthquake;Baral;Curr. Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3