Detection of Glacier Calving Margins with Convolutional Neural Networks: A Case Study

Author:

Mohajerani YaraORCID,Wood MichaelORCID,Velicogna IsabellaORCID,Rignot EricORCID

Abstract

The continuous and precise mapping of glacier calving fronts is essential for monitoring and understanding rapid glacier changes in Antarctica and Greenland, which have the potential for significant sea level rise within the current century. This effort has been mostly restricted to the slow and painstaking manual digitalization of the calving front positions in thousands of satellite imagery products. Here, we have developed a machine learning toolkit to automatically detect glacier calving front margins in satellite imagery. The toolkit is based on semantic image segmentation using Convolutional Neural Networks (CNN) with a modified U-Net architecture to isolate the calving fronts from satellite images after having been trained with a dataset of images and their corresponding manually-determined calving fronts. As a case study we train our neural network on a varied set of Landsat images with lowered resolutions from Jakobshavn, Sverdrup, and Kangerlussuaq glaciers, Greenland and test the results on images from Helheim glacier, Greenland to evaluate the performance of the approach. The neural network is able to identify the calving front in new images with a mean deviation of 96.3 m from the true fronts, equivalent to 1.97 pixels on average, while the corresponding error for manually-determined fronts on the same resolution images is 92.5 m (1.89 pixels). We find that the trained neural network significantly outperforms common edge detection techniques, and can be used to continuously map out calving-ice fronts with a variety of data products.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3