Identifying Strategies to Mitigate Cybersickness in Virtual Reality Induced by Flying with an Interactive Travel Interface

Author:

Page Daniel1ORCID,Lindeman Robert W.1ORCID,Lukosch Stephan1ORCID

Affiliation:

1. HIT Lab NZ, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

Abstract

As Virtual Reality (VR) technology has improved in hardware, accessibility of development and availability of applications, its interest has increased. However, the problem of Cybersickness (CS) still remains, causing uncomfortable symptoms in users. Therefore, this research seeks to identify and understand new CS mitigation strategies that can contribute to developer guidelines. Three hypotheses for strategies were devised and tested in an experiment. This involved a physical travel interface for flying through a Virtual Environment (VE) as a Control (CT) condition. On top of this, three manipulation conditions referred to as Gaze-tracking Vignette (GV), First-person Perspective with members representation (FP) and Fans and Vibration (FV) were applied. The experiment was between subjects, with 37 participants randomly allocated across conditions. According to the Simulator Sickness Questionnaire (SSQ) scores, significant evidence was found that GV and FP made CS worse. Evidence was also found that FV did not have an effect on CS. However, from the physiological data recorded, an overall lowering of heart rate for FV indicated that it might have some effect on the experience, but cannot be strongly linked with CS. Additionally, comments from some participants identified that they experienced symptoms consistent with CS. Amongst these, dizziness was the most common, with a few having issues with the usability of the travel interface. Despite some CS symptoms, most participants reported little negative impact of CS on the overall experience and feelings of immersion.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3