Heat Transfer Enhancement of Liquid Cooled Copper Plate with Oblique Fins for Electric Vehicles Battery Thermal Management

Author:

Aldosry Abdullh MansurORCID,Zulkifli RozliORCID,Wan Ghopa Wan Aizon

Abstract

As the automotive industry progresses, electric vehicles (EV) grow with increasing demand throughout the world. Nickel-metal hydride (NiMH) battery and lithium-ion (Li-ion) are widely used in EV due to their advantages such as impressive energy density, good power density, and low self-discharge. However, the batteries must be operated within their optimum range for safety and good thermal management to enable a longer lifespan, lower costs, and improve safety for EV batteries. The need for a liquid cold plate (LCP) to be used in EV batteries is now highly reliable on the distribution of the required temperature rather than only standard cooling systems. The fins arrangement in the LCP would likewise impact the cooling efficiency of the EV battery. The main objective of this paper is to determine the heat transfer enhancement of liquid cold plate systems with the oblique fin and different types of liquid coolants. In the experimental test, two liquid types are used namely G13 ethylene glycol and distilled water in five steps, 10% ethylene glycol, 100% distilled water, 75% ethylene glycol + 25% distilled water, 50% ethylene glycol + 50% distilled water, and 25% ethylene glycol + 75% distilled water. Three different flow rates have been utilized which are 0.3, 0.5, and 0.7 GPM to maximize the productivity of flowing fluid and heat transferring with the gate door valve. The LCP encompasses the inline configuration of the oblique fin, which is able to enhance the heat transfer rate from the heater to the liquid cold plate. A GPM of 0.7 reached the least surface temperature for the battery in the three different flow levels. The LCP is capable of sustaining the ambient surface temperatures of the batteries just under the permissible 50 °C operating temperature, which indicates that the developed LCP with the oblique fin may perhaps become an effective option for the thermal control of EV batteries.

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3