Proposed Model of Sustainable Resource Management for Smart Grid Utilization

Author:

Tauqeer Haider Ali,Saeed FaisalORCID,Yousuf Muhammad Hassan,Ahmed Haroon,Idrees Asad,Khan Muhammad Haseeb,Gelani Hasan ErtazaORCID

Abstract

Automation and modernization of the grid with the availability of micro-grids including non-conventional sources of energy are the main constituent of smart grid technology. Most energy demand is fulfilled by fossil fuel-based power plants. Inadequacy of fuel resources, higher operating costs, and ever-increasing carbon emissions are the primary constraints of fossil fuels-operated power plants. Sustainable energy resource utilization in meeting energy demand is thought to be a preferred solution for reducing carbon emissions and is also a sustainable economic solution. This research effort discusses an accurate mathematical modeling and simulation implementation of a sustainable energy resource model powered by solar, grid, and proton exchange membrane fuel cell (PEMFC) stack and focuses on the energy management of the model. In the proposed model, despite energy resources being sustainable, consumer side sustainability is achieved by using electrical charging vehicles (ECVs) to be integrated with sustainable resources. The proposed energy resource management (ERM) strategy is evaluated by simulating different operating conditions with and without distributed energy resources exhibiting the effectiveness of the proposed model. PEMFC is incorporated in the model to control fluctuations that have been synchronized with other energy resources for the distribution feeder line. In this proposed model, PEMFC is synchronized with grid and solar energy sources for both DC and AC load with ERM of all sources, making the system effective and reliable for consumer-based load and ECVs utilization.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference29 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3