Evapotranspiration Estimation in the Sahel Using a New Ensemble-Contextual Method

Author:

Allies AubinORCID,Demarty JérômeORCID,Olioso AlbertORCID,Bouzou Moussa Ibrahim,Issoufou Hassane Bil-AssanouORCID,Velluet Cécile,Bahir Malik,Maïnassara IbrahimORCID,Oï Monique,Chazarin Jean-Philippe,Cappelaere BernardORCID

Abstract

In many tropical areas, evapotranspiration is the most important but least known component of the water cycle. An innovative method, named E3S (for EVASPA S-SEBI Sahel), was developed to provide spatially-distributed estimates of daily actual evapotranspiration (ETd) from remote sensing data in the Sahel. This new method combines the strengths of a contextual approach that is used to estimate the evaporative fraction (EF) from surface temperature vs. albedo scatterograms and of an ensemble approach that derives ETd estimates from a weighted average of evapotranspiration estimated from several EF methods. In this work, the two combined approaches were derived from the simplified surface energy balance index (S-SEBI) model and the EVapotranspiration Assessment from SPAce (EVASPA) tool. Main innovative aspects concern (i) ensemble predictions of ETd through the implementation of a dynamic weighting scheme of several evapotranspiration estimations, (ii) epistemic uncertainty of the estimation of ETd from the analysis of the variability of evapotranspiration estimates, and (iii) a new cloud filtering method that significantly improves the detection of cloud edges that negatively affect EF determination. E3S was applied to MODIS/TERRA and AQUA datasets acquired during the 2005–2008 period over the mesoscale AMMA-CATCH (Analyse Multidisciplinaire de la Mousson Africaine—Couplage de l’Atmosphère Tropicale et du Cycle Hydrologique) observatory in South-West Niger. E3S estimates of instantaneous and daily available energy, evaporative fraction, and evapotranspiration were evaluated at a local scale based on two field-monitored plots representing the two main ecosystem types in the area—a millet crop and a fallow savannah bush. In addition to these ground-based observations, the local scale evaluation was performed against continuous simulations by a locally-calibrated soil-vegetation-atmosphere transfer model for the two plots. The RMSE (root mean square error) from this comparison for E3S’s ETd estimates from combined AQUA/TERRA sources was 0.5 mm·day−1, and the determination coefficient was 0.90. E3S significantly improved representation of the evapotranspiration seasonality, compared with a classical implementation of S-SEBI or with the original EVASPA’s non-weighted ensemble scheme. At the mesoscale, ETd estimates were obtained with an average epistemic uncertainty of 0.4 mm·day−1. Comparisons with the reference 0.25°-resolution GLEAM (global land evaporation Amsterdam model) product showed good agreement. These results suggested that E3S could be used to produce reliable continuous regional estimations at a kilometric resolution, consistent with land and water management requirements in the Sahel. Moreover, all these innovations could be easily transposed to other contextual approaches.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3