Detection and Characterization of Active Slope Deformations with Sentinel-1 InSAR Analyses in the Southwest Area of Shanxi, China

Author:

Shi XuguoORCID,Zhang Li,Zhong YulongORCID,Zhang LuORCID,Liao Mingsheng

Abstract

A catastrophic landslide happened on 15 March 2019 in Xiangning County of Shanxi Province, causing 20 fatalities. Such an event makes us realize the significance of loess slope instability detection. Therefore, it is essential to identify the potential active landslides, monitor their displacements, and sort out dominant controlling factors. Synthetic Aperture Radar (SAR) Interferometry (InSAR) has been recognized as an effective tool for geological hazard mapping with wide coverage and high precision. In this study, the time series InSAR analysis method was applied to map the unstable areas in Xiangning County, as well as surrounding areas from C-band Sentinel-1 datasets acquired from March 2017 to 2019. A total number of 597 unstable sites covering 41.7 km2 were identified, among which approximately 70% are located in the mountainous areas which are prone to landslides. In particular, the freezing and thawing cycles might be the primary triggering factor for the failure of the Xiangning landslide. Furthermore, the nonlinear displacements of the active loess slopes within this region were found to be correlated significantly with precipitation. Therefore, a climate-driven displacement model was employed to explore the quantitative relationship between rainfall and nonlinear displacements.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3