Reliability of Different Nanofluids and Different Micro-Channel Configurations on the Heat Transfer Augmentation

Author:

Elbadawy Ibrahim1ORCID,Alhajri Abdulaziz1ORCID,Doust Mohammad1ORCID,Almulla Yousef1,Fayed Mohamed1ORCID,Dinc Ali1ORCID,Abouelela Mohamed1ORCID,Mahariq Ibrahim1ORCID,Al-Kouz Wael1

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Kuwait

Abstract

Nanofluid, the fluid suspensions of a metallic nanoparticle, became a coolant fluid that is used when a promising enhancement in heat transfer is required. In the current study, the characteristics of fluid flow and heat transfer are numerically investigated using different nanofluids (Al2O3–H2O, TiO2–H2O, and SiO2–H2O) and different micro-channel heat sink (MCHS) configurations (rectangular, triangular, trapezoidal, and circular). In this numerical investigation, the effect of Re number ranged from 890 to 1500, and the effect of nanoparticle concentration ranged from 1% to 7% at constant heat flux q = 106 W/m2, and constant fluid inlet temperature of 288 K, were studied. The average heat transfer coefficient, h, and pressure drop, Δp, are used to quantify the fluid flow and heat transfer characteristics in each MCHS configuration and for each nanoparticle concentration. It is revealed that a better heat transfer coefficient is obtained for Al2O–H2O compared with other types of nanoparticles and pure water, such as 8.58% heat transfer coefficient improvement obtained at Re = 1500 and φ=7% more than that of pure water. It is also inferred that the maximum heat transfer coefficient is obtained by the triangular MCHS; however, it has the highest pressure drop because of the lowest hydraulic diameter.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3