Structural Optimization of High-Pressure Polyethylene Cyclone Separator Based on Energy Efficiency Parameters

Author:

Hu Baisong1,Liu Shuo1,Wang Chuanzhi2,Gao Bingjun1ORCID

Affiliation:

1. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China

2. Beijing Yanhua Engineering Construction Company, Beijing 102502, China

Abstract

The high-pressure polyethylene process uses cyclone separators to separate ethylene gas, polyethylene, and its oligomers. The oligomers larger than 10 microns that cannot be separated must be filtered through a filter to prevent them from entering the compressor and affecting its normal operation. When the separation efficiency of the cyclone separator is low, the filter must be cleaned more frequently, which will reduce production efficiency. Research shows that improving the separation efficiency of the separator is beneficial for the separation of small-particle oligomers and reduces the frequency of filter cleaning. For this reason, Computational Fluid Dynamics simulations were performed for 27 sets of cyclone separators to determine the effects of eight structural factors (cylinder diameter, cylinder height, cone diameter, cone height, guide vane height, guide vane angle, exhaust pipe extension length, and umbrella structure height) on separation efficiency and pressure drop. The equations for separation efficiency and pressure drop using these eight factors and the equations based on energy-efficiency parameters were determined. The optimization analysis showed that separation efficiency can be improved by 98.7% under the premise that the pressure drop is only increased by 8.2%. By applying the improved structure to the high-pressure polyethylene process, separation efficiency is increased by 17.7%, which could effectively reduce the frequency of filter cleaning for this process, and thereby greatly improve production efficiency.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3