Analysis of Bottomhole Rock Stress in Deep-Well Drilling Considering Thermal-Hydro-Mechanical Coupling

Author:

Yang Bin1,Xu Honglin1

Affiliation:

1. School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

Drilling is a key step in the exploitation of deep oil and gas resources. In order to clarify the stress state of the rocks and the mechanism of rock breakage in deep-well drilling, a thermal-hydro-mechanical coupling model for deep-well drilling was established, and the effects of drilling on the temperature, pressure, and stress in the formation were studied. Furthermore, the effects of the formation parameters and wellbore parameters on the bottomhole stress were analyzed. The results revealed that after the formation was drilled, the temperatures in different horizontal in situ stress directions were not significantly different, but the difference in the pore pressure between the maximum and minimum horizontal stress directions was large. The average effective stress at the bottom of the hole was the smallest, and in some areas, it was tensile stress. For deep-well drilling, as the formation pressure increased, the in situ stress increased, and the permeability decreased, leading to greater average effective stress of the bottomhole rock. As a result, it was harder to break the rock, and the drilling efficiency decreased. Reducing the wellbore pressure and wellbore temperature is conducive to forming tensile stress near the borehole axis in the bottomhole, causing tensile damage. The average effective stress of the formation near the shoulder of the drill bit was compressive stress, and it is advisable to take advantage of the rock shear failure characteristics to improve the drilling efficiency in this area. The results of this study can help us to understand the stress state of the bottomhole rocks and the mechanism of rock breakage and can provide a reference for the optimization of drilling tools and drilling parameters in deep-well drilling.

Funder

the Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference36 articles.

1. Deep and ultra-deep oil and gas well drilling technologies: Progress and prospect;Wang;Nat. Gas Ind. B,2022

2. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China;Su;Oil Drill. Prod. Technol.,2020

3. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources;Zou;Pet. Explor. Dev.,2015

4. Review of unconventional hydrocarbon resources in major energy consuming countries and efforts in realizing natural gas hydrates as a future source of energy;Vedachalam;J. Nat. Gas Sci. Eng.,2015

5. Intelligent drilling technology research status and development trends;Li;Pet. Drill. Tech.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3