Abstract
The sense of touch enables us to safely interact and control our contacts with our surroundings. Many technical systems and applications could profit from a similar type of sense. Yet, despite the emergence of e-skin systems covering more extensive areas, large-area realizations of e-skin effectively boosting applications are still rare. Recent advancements have improved the deployability and robustness of e-skin systems laying the basis for their scalability. However, the upscaling of e-skin systems introduces yet another challenge—the challenge of handling a large amount of heterogeneous tactile information with complex spatial relations between sensing points. We targeted this challenge and proposed an event-driven approach for large-area skin systems. While our previous works focused on the implementation and the experimental validation of the approach, this work now provides the consolidated foundations for realizing, designing, and understanding large-area event-driven e-skin systems for effective applications. This work homogenizes the different perspectives on event-driven systems and assesses the applicability of existing event-driven implementations in large-area skin systems. Additionally, we provide novel guidelines for tuning the novelty-threshold of event generators. Overall, this work develops a systematic approach towards realizing a flexible event-driven information handling system on standard computer systems for large-scale e-skin with detailed descriptions on the effective design of event generators and decoders. All designs and guidelines are validated by outlining their impacts on our implementations, and by consolidating various experimental results. The resulting system design for e-skin systems is scalable, efficient, flexible, and capable of handling large amounts of information without customized hardware. The system provides the feasibility of complex large-area tactile applications, for instance in robotics.
Funder
Technical University of Munich
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference94 articles.
1. Principles of Neural Science;Amaral,2013
2. Human Factors in Practice—Concepts and Applications;Cuevas,2018
3. Simplified calculation of body-surface area;Mosteller;N. Engl. J. Med.,1987
4. Principles of Neural Science;Gardner,2013
5. Anatomy & Physiology: The Unity of Form and Function;Saladin,2018
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献