Experimental Evaluation of a Full-Scale HVAC System Working with Nanofluid

Author:

Milanese MarcoORCID,Micali FrancescoORCID,Colangelo GianpieroORCID,de Risi ArturoORCID

Abstract

Nowadays, energy saving is considered a key issue worldwide, as it brings a variety of benefits: reducing greenhouse gas emissions and the demand for energy imports and lowering costs on a household and economy-wide level. Researchers and building designers are looking to optimize building efficiency by means of new energy technologies. Changes can also be made in existing buildings to reduce the energy consumption of air conditioning systems, even during operational conditions without dramatically modifying the system layout and have as low an impact as possible on the cost of the modification. These may include the usage of new heat transfer fluids based on nanofluids. In this work, an extended experimental campaign (from February 2020 to March 2021) has been carried out on the HVAC system of an educational building in the Campus of University of Salento, Lecce, Italy. The scope of the investigation was comparing the COP for the two HVAC systems (one with nanofluid and the other one without) operating concurrently during winter and summer: simultaneous measurements on the two HVAC systems show that the coefficient of performance (COP) with nanofluid increased on average by 9.8% in winter and 8.9% in summer, with average daily peaks of about 15%. Furthermore, the comparison between the performance of the same HVAC system, working in different comparable periods with and without nanofluids, shows a mean increase in COP equal to about 13%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3