Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning

Author:

Xiong Yongzhu,Zhu Mingyong,Li YongyiORCID,Huang Kekun,Chen Yankui,Liao Jingqing

Abstract

Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications for geothermal resource exploration. It is essential to recognize various GSMs for potential geothermal energy exploration. However, there is a lack of work to fulfill this task using deep learning (DL), which has achieved unprecedented successes in computer vision and image interpretation. This study aims to explore the feasibility of using a DL model to fulfill the recognition of GSMs with photographs. A new image dataset was created for the GSM recognition by preprocessing and visual interpretation with expert knowledge and a high-quality check after downloading images from the Internet. The dataset consists of seven GSM types, i.e., warm spring, hot spring, geyser, fumarole, mud pot, hydrothermal alteration, crater lake, and one type of none GSM, including 500 images of different photographs for each type. The recognition results of the GoogLeNet model were compared with those of three machine learning (ML) algorithms, i.e., Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbor (KNN), by using the assessment metrics of overall accuracy (OA), overall F1 score (OF), and computational time (CT) for training and testing the models via cross-validation. The results show that the retrained GoogLeNet model using transfer learning has significant advantages of accuracies and performances over the three ML classifiers, with the highest OA, the biggest OF, and the fastest CT for both the validation and test. Correspondingly, the three selected ML classifiers perform poorly for this task due to their low OA, small OF, and long CT. This suggests that transfer learning with a pretrained network be a feasible method to fulfill the recognition of the GSMs. Hopefully, this study provides a reference paradigm to help promote further research on the application of state-of-the-art DL in the geothermics domain.

Funder

National Natural Science Foundation of China

Guangdong Natural Science Foundation

Guangdong Province Special Project in Key Fields for Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference52 articles.

1. Geothermal Energy: An Alternative Resource for the 21st Century;Gupta,2007

2. Geothermal energy in China

3. Geothermal studies in China: Progress and prospects 1995–2014;Pang;Chin. J. Geol.,2014

4. Geothermics Ant Its Applications;Wang,2015

5. Study on the Development and Utilization Strategy of Geothermal Resources in China;Duoji,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3