Flow and Thermal Analysis of a Racing Car Braking System

Author:

Cravero Carlo,Marsano DavideORCID

Abstract

The braking system of a racing car is one of the main design challenges. The flow around and inside the wheel of an F1 car with all braking system components is analyzed in order to evaluate the heat transfer after a braking event. Very few studies have been published on this topic, mainly due to the high confidentiality level in the racing car sector. In the present work, using an actual geometry of an early 2000s F1 car, the braking system is simulated using a CFD approach. The boundary conditions for the wheel and brake system are taken from the simulation of a vehicle model with a front wing. Different heat transfer phenomena are progressively added to the model in order to understand their effects, including thermal convection only, radiation and conjugate heat transfer. Two different vehicle velocities are simulated to quantify and compare the heat removal after a braking event. The different heat transfer mechanisms have dramatic effects on the prediction of the brake cooling results, and these are quantified in order to understand the limitations of the simplified approaches. Finally, the influence of the ambient pressure at two different altitudes on the heat transfer from a braking event is studied.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Approaches to the Thermal Modelling of Disk Brakes;Sheridan;J. Passegner Cars,1988

2. The Dissipation of Frictional Energy from the Interface of an Annular Disc Brake

3. An Analysis of Speed, Temperature, and Performance Characteristics of Automotive Drum Brakes

4. The Electric Car: Development and Future of Battery, Hybrid and Fuel Cell Cars;Westbrook,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3