Author:
Fu Tao,Zhang Tianci,Song Xueguan
Abstract
A tunnel boring machine (TBM) is an important large-scale engineering machine, which is widely applied in tunnel construction. Precise cutterhead torque prediction plays an essential role in the cost estimation of energy consumption and safety operation in the tunneling process, since it directly influences the adaptable adjustment of excavation parameters. Complicated and variable geological conditions, leading to operational and status parameters of the TBM, usually exhibit some spatio-temporally varying characteristic, which poses a serious challenge to conventional data-based methods for dynamic cutterhead torque prediction. In this study, a novel hybrid transfer learning framework, namely TRLS-SVR, is proposed to transfer knowledge from a historical dataset that may contain multiple working patterns and alleviate fresh data noise interference when addressing dynamic cutterhead torque prediction issues. Compared with conventional data-driven algorithms, TRLS-SVR considers long-ago historical data, and can effectively extract and leverage the public latent knowledge that is implied in historical datasets for current prediction. A collection of in situ TBM operation data from a tunnel project located in China is utilized to evaluate the performance of the proposed framework.
Funder
the National Key R&D Program of China
the National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献