A Novel Hybrid Transfer Learning Framework for Dynamic Cutterhead Torque Prediction of the Tunnel Boring Machine

Author:

Fu Tao,Zhang Tianci,Song Xueguan

Abstract

A tunnel boring machine (TBM) is an important large-scale engineering machine, which is widely applied in tunnel construction. Precise cutterhead torque prediction plays an essential role in the cost estimation of energy consumption and safety operation in the tunneling process, since it directly influences the adaptable adjustment of excavation parameters. Complicated and variable geological conditions, leading to operational and status parameters of the TBM, usually exhibit some spatio-temporally varying characteristic, which poses a serious challenge to conventional data-based methods for dynamic cutterhead torque prediction. In this study, a novel hybrid transfer learning framework, namely TRLS-SVR, is proposed to transfer knowledge from a historical dataset that may contain multiple working patterns and alleviate fresh data noise interference when addressing dynamic cutterhead torque prediction issues. Compared with conventional data-driven algorithms, TRLS-SVR considers long-ago historical data, and can effectively extract and leverage the public latent knowledge that is implied in historical datasets for current prediction. A collection of in situ TBM operation data from a tunnel project located in China is utilized to evaluate the performance of the proposed framework.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3