Condensation Flow and Heat Transfer Characteristics of R410A in Micro-Fin Tubes and Three-Dimensional Surface Enhanced Tubes

Author:

Gao Yu,Cheng Hong,Li Wei,Kukulka David JohnORCID,Smith Rick

Abstract

Condensation heat transfer characteristics (using R410A as the working fluid) were studied experimentally to evaluate the heat transfer performance in copper and stainless-steel heat transfer tubes (smooth and enhanced). Experiments were carried out for a mass flux that varied from 250 to 450 kg m−2 s−1, at a saturation temperature of 318 K. Single-phase heat balance verification found that the heat loss is less than 6%, and the deviation between single-phase experimental results and various prediction correlations is less than 15%. Additionally, tube side condensation flow patterns were observed and recorded. Experimental results found that the enhancement ratio of the condensation heat transfer coefficient (enhanced tube/smooth tube) of the three-dimensional surface (1EHT) tube is in the range of 1.15~1.90, while the ratio of the micro-fin (HX) tube is in the range of 1.18~1.80. Heat transfer performance is affected by material conductivity, with the thermal conductivity of the smooth tube slightly affecting the heat transfer performance; larger heat transfer enhancements are produced in the enhanced tubes. At a low mass flow rates and vapor qualities, the flow pattern is a stratified wavy flow, while at higher mass flow rates and vapor qualities, the flow pattern is an annular flow (with the area in the enhanced tube being larger than the area of a smooth tube). Flow patterns in the smooth tube are consistent with the predicted values shown in previously reported flow pattern maps. A flow pattern diagram for condensation heat transfer in enhanced tubes is presented as part of this study. The condensation heat transfer coefficient increases with an increase in mass flow. When the mass flow rate increases, the turbulence of the liquid flow increases and the liquid film becomes thinner; thermal resistance is reduced and the heat transfer coefficient increases. Heat transfer values at lower mass velocities increase slightly with increasing mass flux values; however, at higher mass flux rates the heat transfer increase is larger than that at low mass flux values. Finally, tubes produced from high thermal conductivity materials produce larger heat transfer performance gains than the gains found in smooth tubes; small diameter tubes produce larger gains than larger diameter tubes.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3