Influence of a Cooling System on Power MOSFETs’ Thermal Parameters

Author:

Górecki KrzysztofORCID,Posobkiewicz KrzysztofORCID

Abstract

In the current paper, an analysis of the influence of cooling system selection on the thermal parameters of two thermally coupled power MOSFETs is presented. The required measurements of the thermal parameters were performed using the indirect electrical method at different values of power dissipated in the investigated transistors and various supply conditions for the active parts of their cooling systems. The results of the investigations are analysed and discussed. Functions modelling the observed dependences of thermal parameters of the investigated MOSFETs on the power that was dissipated in them as well as the supply conditions of the active parts of their cooling systems are proposed. A good agreement between the results of the measurements and the computations was obtained. It is shown that the use of active cooling systems makes it possible to reduce the value of the thermal resistance of the tested transistor up to 20 times. In each of the tested systems, the self- and transfer-thermal resistances decreased with an increase in the dissipated power and the rotational speed of the fan.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Power Electronics Semiconductor Devices;Perret,2009

2. Power Electronic Handbook;Rashid,2007

3. Pulse-width Modulated DC-DC Power Converters;Kazimierczuk,2008

4. Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters—A Review

5. Methods of Fast Analysis of DC–DC Converters—A Review

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3