Abstract
The cosmetic industry has flourished in recent years. Accordingly, the safety of cosmetic ingredients is increasing. Bromochlorophene (BCP) is a commonly used cosmetic preservative. To evaluate the effects of BCP exposure, in vitro dermal absorption and in vivo pharmacokinetic (PK) studies were conducted using gel and cream formulations. The Franz diffusion cell system and rat dorsal skin were used for tests according to the Korea Ministry of Food and Drug Safety guidelines for in vitro skin absorption methods. After the dermal application (1.13 mg/cm2) of BCP in the gel and cream formulations, liquid chromatography–mass spectrometry (LC–MS/MS) was used to evaluate the amount of BCP that remained unabsorbed on the skin (WASH), and that was present in the receptor fluid (RF), stratum corneum (SC), and (epi)dermis (SKIN). The total dermal absorption rate of BCP was 7.42 ± 0.74% for the gel formulation and 1.5 ± 0.9% for the cream formulation. Total recovery in an in vitro dermal absorption study was 109.12 ± 8.79% and 105.43 ± 11.07% for the gel and cream formulations, respectively. In vivo PK and dermal absorption studies of BCP were performed following the Organization for Economic Cooperation and Development guidelines 417 and 427, respectively. When intravenous (i.v.) pharmacokinetics was performed, BCP was dissolved in glycerol formal and injected into the tail vein (n = 3) of the rats at doses of 1 and 0.2 mg/kg. Dermal PK parameters were estimated by the application of the gel and cream formulations (2.34 mg/kg of BCP as an active ingredient) to the dorsal skin of the rats. Intravenous and dermal PK parameters were analyzed using a non-compartmental method. The dermal bioavailability of BCP was determined as 12.20 ± 2.63% and 4.65 ± 0.60% for the gel and cream formulations, respectively. The representative dermal absorption of BCP was evaluated to be 12.20 ± 2.63% based on the results of the in vivo PK study.
Funder
Ministry of Food and Drug Safety
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献