Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential

Author:

An JinsungORCID

Abstract

Arsenic is a metalloid that is highly toxic to living organisms in the environment. In this study, toxicity caused by inorganic arsenate (As(V)) to terrestrial plants, such as barley Hordeum vulgare and wheat Triticum aestivum, was predicted using the existing biotic ligand model (BLM) for bioluminescent Aliivibrio fischeri via interspecies extrapolation. Concurrently, the concept of cell plasma membrane electrical potential (Ψ0) was incorporated into the extrapolated BLM to improve the model predictability in the presence of major cations such as Ca2+. The 50% effective As(V) toxicity (EC50{HAsO42−}) to H. vulgare decreased from 45.1 ± 4.34 to 15.0 ± 2.60 µM as Ca2+ concentration increased from 0.2 to 20 mM owing to the accumulation of H2AsO4− and HAsO42− on the cell membrane surface. The extrapolated BLM, which only considered inherent sensitivity, explained well the alteration of As(V) toxicity to H. vulgare and T. aestivum by Ca2+ with in an order of magnitude, when considering a linear relationship between Ψ0 and EC50{HAsO42−}.

Funder

Semyung University

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3