Indoor Particle’s Pollution in Bucharest, Romania

Author:

Popescu Lelia LetitiaORCID,Popescu Razvan Stefan,Catalina TiberiuORCID

Abstract

Air pollution risk factor on human health was surpassed only by high blood pressure, tobacco use and poor diet. Total number of deaths due to air pollution worldwide was estimated to 6.67 million people in 2019. In the European Union, 97% of the urban population is exposed to levels of fine particulate matter above the latest guideline levels set by the World Health Organization. Air pollution accounts for 20% of newborn deaths worldwide, most related to complications of low birth weight and preterm birth. Low birth weight and preterm birth are responsible for 1.8 million deaths worldwide. Bucharest is the capital city of Romania and one of the most polluted cities in Europe, ranking in the 9th position out of 96 of the top cities from Europe and in the 4th position out of 32 of the top cities in Eastern Europe, data from June 2022. The aim of this study was to measure the real time level of indoor particulate pollution levels in different indoor environments from Bucharest, during the pandemic period. The PM2.5/PM10 ratio and its rate of change were also determined for the measured data. The PM2.5/PM10 ratio and its rate of change were also calculated based on the measurement data. The PM2.5/PM10 ratio showed an upward trend on weekends compared to weekdays, suggesting a relationship with outdoor PM where leisure activities and traffic infiltrated the indoors. The fluctuation range of the PM2.5/PM10 ratio was 0.44~0.95, and low measured values were detected on weekdays. Of the seasons, the proportion of particulate in autumn and its rate of change tended to be higher than in summer. It was suggested that outdoor air may have permeated the room. In addition, the relationship was considered, such as it is a holiday period, there are few rainy days, the concentration of coarse particles is high, and the number of residents in the city decreases. When it comes to indoor air quality, the higher this ratio, the more serious the air pollution. PM10 concentrations decreased by 29.1% in the absence of human activity and increased by 35.1% in the presence of humans. PM2.5 concentration decreased by 30.3% without human activity and increased by 3.1% with the presence of humans. Certain trends were suggested for the resumption of human activity and an increase in PM2.5 concentrations. The average relative difference between October 2021, a pandemic period, and October 2022, a post pandemic period, was 64% for PM10 and 47% for PM2.5. The pandemic period brought a significantly better indoor air quality from the particulate pollution point of view.

Funder

Technical University of Construction of Bucharest, Romania

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3