Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI

Author:

Denmark DeAunne,Ruhoy IleneORCID,Wittmann Bryan,Ashki Haleh,Koran Lorrin M.ORCID

Abstract

Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure—a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3