Transgenerational Effects of Prenatal Endocrine Disruption on Reproductive and Sociosexual Behaviors in Sprague Dawley Male and Female Rats

Author:

Kermath Bailey A.ORCID,Thompson Lindsay M.,Jefferson Justin R.,Ward Mary H. B.,Gore Andrea C.ORCID

Abstract

Endocrine-disrupting chemicals (EDCs) lead to endocrine and neurobehavioral changes, particularly due to developmental exposures during gestation and early life. Moreover, intergenerational and transgenerational phenotypic changes may be induced by germline exposure (F2) and epigenetic germline transmission (F3) generation, respectively. Here, we assessed reproductive and sociosexual behavioral outcomes of prenatal Aroclor 1221 (A1221), a lightly chlorinated mix of PCBs known to have weakly estrogenic mechanisms of action; estradiol benzoate (EB), a positive control; or vehicle (3% DMSO in sesame oil) in F1-, F2-, and F3-generation male and female rats. Treatment with EDCs was given on embryonic day (E) 16 and 18, and F1 offspring monitored for development and adult behavior. F2 offspring were generated by breeding with untreated rats, phenotyping of F2s was performed in adulthood, and the F3 generation were similarly produced and phenotyped. Although no effects of treatment were found on F1 or F3 development and physiology, in the F2 generation, body weight in males and uterine weight in females were increased by A1221. Mating behavior results in F1 and F2 generations showed that F1 A1221 females had a longer latency to lordosis. In males, the F2 generation showed decreased mount frequency in the EB group. In the F3 generation, numbers of ultrasonic vocalizations were decreased by EB in males, and by EB and A1221 when the sexes were combined. Finally, partner preference tests in the F3 generation revealed that naïve females preferred F3-EB over untreated males, and that naïve males preferred untreated over F3-EB or F3-A1221 males. As a whole, these results show that each generation has a unique, sex-specific behavioral phenotype due to direct or ancestral EDC exposure.

Funder

National Institute of Environmental Health Sciences

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3