Towards Whole Health Toxicology: In-Silico Prediction of Diseases Sensitive to Multi-Chemical Exposures

Author:

Arowolo OlatunbosunORCID,Salemme Victoria,Suvorov AlexanderORCID

Abstract

Chemical exposures from diverse sources merge on a limited number of molecular pathways described as toxicity pathways. Changes in the same set of molecular pathways in different cell and tissue types may generate seemingly unrelated health conditions. Today, no approaches are available to predict in an unbiased way sensitivities of different disease states and their combinations to multi-chemical exposures across the exposome. We propose an inductive in-silico workflow where sensitivities of genes to chemical exposures are identified based on the overlap of existing genomic datasets, and data on sensitivities of individual genes is further used to sequentially derive predictions on sensitivities of molecular pathways, disease states, and groups of disease states (syndromes). Our analysis predicts that conditions representing the most significant public health problems are among the most sensitive to cumulative chemical exposures. These conditions include six leading types of cancer in the world (prostatic, breast, stomach, lung, colorectal neoplasms, and hepatocellular carcinoma), obesity, type 2 diabetes, non-alcoholic fatty liver disease, autistic disorder, Alzheimer’s disease, hypertension, heart failure, brain and myocardial ischemia, and myocardial infarction. Overall, our predictions suggest that environmental risk factors may be underestimated for the most significant public health problems.

Funder

US National Institute of Health

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3