An Improved Multiple Competitive Immuno-SERS Sensing Platform and Its Application in Rapid Field Chemical Toxin Screening

Author:

Sun Jiefang,Wang Zixuan,Yang Ling,He Yi,Liu Rui,Ran Wei,Wang ZhanhuiORCID,Shao Bing

Abstract

Improving the signal-to-noise ratio (SNR) by amplifying the outputting signal or reducing nonspecific binding (NSB) are the key techniques in multiple immunoassay. Aiming at these issues, this paper presents an improved multiple indirect competitive immune surface-enhanced Raman scattering (ci-SERS) assay for the rapid screening of highly toxic rodenticides in food and biological samples, which ensured remarkable accuracy, ultra-sensitivity and reproducibility. The non-fouling polymer brush grafted magnetic beads (the MB@P-CyM) were prepared as multiple competitive recognition substrates after conjugating triplex haptens (the MB@P-CyM-hap). It was demonstrated that the particular 3D hair-like structures of P-CyM not only facilitate conjugate high-density hapten but reduce the steric hindrance from SERS probes recognition, thus enhancing SNB. On the other hand, Au nanoflowers (AuNFs) of high SERS activity were synthesized using a simple one-pot hydrazine reduction. For simultaneously detecting three highly toxic rodenticides, i.e., diphacinone (DPN), bromadiolone (BRD) and tetramine (TET), the obtained AuNFs were fabricated as a SERS-encoded nanoprobe cocktail after successively labeling mono-antibodies/Raman probes. By integrating the MB@P-CyM-hap with the SERS-encoded cocktail, a highly sensitive multiple SERS assay was achieved in less than 2 h with a limit of detection of 0.62 ng mL−1 for BRD, 0.42 ng mL−1 for TET and 1.37 ng mL−1 for DPN, respectively. The recoveries of these rodenticides in spiked food and biological samples were determined and ranged from 72 to 123%. Above all, the proposed modifications show remarkable improvements for high efficient multiple chemical toxin immunoassay.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3