Abstract
Red-mud leachate from tailings ponds contains Cr(VI), which can pollute groundwater via infiltration through anti-seepage layers. This paper investigates leachate from a red-mud tailings pond in southwest China and the red clay in the surrounding area to simulate the adsorption of Cr(VI) onto clay at different pHs, using geochemical equilibrium software (Visual MINTEQ). We also performed dynamic adsorption testing of Cr(VI) on a clay anti-seepage layer. The dynamic adsorption behaviors and patterns in the dynamic column were predicted using the Thomas and Yoon–Nelson models. Visual MINTEQ predicted that Cr(VI) adsorption in red-mud leachate onto clay was 69.91%, increasing gradually with pH, i.e., adsorption increased under alkaline conditions. Cr(VI) concentration in the effluent was measured using the permeability test through a flexible permeameter when the adsorption saturation time reached 146 days. At a low seepage rate, Cr(VI) adsorption onto the clay anti-seepage layer took longer. Saturation adsorption capacity, q0, and adsorption rate constant, Kth, were determined using the Thomas model; the Yoon–Nelson model was used to determine when the effluent Cr(VI) concentration reached 50% of the initial concentration. The results provide parameters for the design and pollution prediction of the clay anti-seepage layer of red-mud tailings ponds.
Funder
Natural Science Foundation of Sichuan, China
Natural Science Foundation of Xihua University
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献