Efficient Energy Saving Scenarios for Indoor PM2.5 Management in an Apartment of South Korea

Author:

Kim YounghunORCID,Shin Dongho,Hong Kee-Jung,Lee Gunhee,Kim Sang BokORCID,Park Inyong,Han Bangwoo,Hwang Jungho

Abstract

Indoor PM2.5 must be effectively controlled to minimize adverse impacts on public health. Cooking is one of the main sources of PM2.5 in residential areas, and indoor air quality (IAQ) management methods such as natural and mechanical ventilation, range hood, and air purifier are typically used to reduce cooking-generated PM2.5 concentrations. However, studies on the combined effects of various IAQ management methods on indoor PM2.5 reduction and energy consumption are limited. In this study, a theoretical model was established to estimate the performance of various IAQ management methods for controlling indoor PM2.5 concentrations and energy consumption. The model was verified by comparative experiments in which, various IAQ management methods were operated individually or combined. Seasonal energy consumption was calculated through the verified model, and energy consumption saving scenarios were derived for maintaining indoor PM2.5 concentrations less than 10 μg/m3, a World Health Organization annual guideline, under fair and poor outdoor PM2.5 concentrations of 15 and 50 μg/m3, respectively. Based on our results, we found that energy consumption could be reduced significantly by applying natural ventilation in spring, autumn, and summer and mechanical ventilation in winter. Our study identified efficient energy saving PM2.5 management scenarios using various IAQ management methods by predicting indoor PM2.5 concentration and energy consumption according to the annual life patterns of typical residents in South Korea.

Funder

Korea Institute of Machinery and Materials

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3