Effects of an Arbuscular Mycorrhizal Fungus on the Growth of and Cadmium Uptake in Maize Grown on Polluted Wasteland, Farmland and Slopeland Soils in a Lead-Zinc Mining Area

Author:

Chen Jiaxin,Guo Jianfang,Li Zuran,Liang Xinran,You Yihong,Li Mingrui,He YongmeiORCID,Zhan FangdongORCID

Abstract

Arbuscular mycorrhizal fungi (AMF) exist widely in soil polluted by heavy metals and have significant effects on plant growth and cadmium (Cd) uptake. Cd contents differ among wasteland, farmland and slopeland soils in a lead-zinc mining area in Yunnan Province, Southwest China. The effects of AMF on maize growth, root morphology, low-molecular-weight organic acid (LMWOA) concentrations and Cd uptake were investigated via a root-bag experiment. The results show that AMF increased maize growth on Cd-polluted soils, resulting in increases in root length, surface area, volume and branch number, with the effects being stronger in farmland than in wasteland and slopeland soils; increased malic acid and succinic acid secretion 1.3-fold and 1.1-fold, respectively, in roots on farmland soil; enhanced the iron- and manganese-oxidized Cd concentration by 22.6%, and decreased the organic-bound Cd concentration by 12.9% in the maize rhizosphere on farmland soil; and increased Cd uptake 12.5-fold and 1.7-fold in shoots and by 25.7% and 86.6% in roots grown on farmland and slopeland soils, respectively. Moreover, shoot Cd uptake presented significant positive correlations with root surface area and volume and LMWOA concentrations. Thus, these results indicated the possible mechanism that the increased maize Cd uptake induced by AMF was closely related to their effect on root morphology and LMWOA secretion, with the effects varying under different Cd pollution levels.

Funder

National Natural Science Foundation of China

the Reserve Talents Funds for Young and Middle-Aged Academic and Technological leaders in Yunnan Province

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3