Potentially Toxic Elements in Urban Soils from Public-Access Areas in the Rapidly Growing Megacity of Lagos, Nigeria

Author:

Famuyiwa Abimbola O.ORCID,Davidson Christine M.ORCID,Ande Sesugh,Oyeyiola Aderonke O.

Abstract

Rapid urbanization can lead to significant environmental contamination with potentially toxic elements (PTEs). This is of concern because PTEs are accumulative, persistent, and can have detrimental effects on human health. Urban soil samples were obtained from parks, ornamental gardens, roadsides, railway terminals and locations close to industrial estates and dumpsites within the Lagos metropolis. Chromium, Cu, Fe, Mn, Ni, Pb and Zn concentrations were determined using inductively coupled plasma mass spectrometry following sample digestion with aqua regia and application of the BCR sequential extraction procedure. A wide range of analyte concentrations was found—Cr, 19–1830 mg/kg; Cu, 8–11,700 mg/kg; Fe, 7460–166,000 mg/kg; Mn, 135–6100 mg/kg; Ni, 4–1050 mg/kg; Pb, 10–4340 mg/kg; and Zn, 61–5620 mg/kg—with high levels in areas close to industrial plants and dumpsites. The proportions of analytes released in the first three steps of the sequential extraction were Fe (16%) < Cr (30%) < Ni (46%) < Mn (63%) < Cu (78%) < Zn (80%) < Pb (84%), indicating that there is considerable scope for PTE (re)mobilization. Human health risk assessment indicated non-carcinogenic risk for children and carcinogenic risk for both children and adults. Further monitoring of PTE in the Lagos urban environment is therefore recommended.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference64 articles.

1. Department of Economics and Social Affairs, Population Division, United Nations, 2015, Revisionhttp://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf

2. Urban environmental geochemistry of trace metals

3. Metals in particle-size fractions of the soils of five European cities

4. Human health risk from Pb in urban street dust in northern UK cities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3