Acute and Chronic Toxicity of Binary Mixtures of Bisphenol A and Heavy Metals

Author:

Yang JunORCID,Liao Anqi,Hu Shulin,Zheng Yiwen,Liang Shuli,Han Shuangyan,Lin Ying

Abstract

Bisphenol A (BPA) and heavy metals are widespread contaminants in the environment. However, the combined toxicities of these contaminants are still unknown. In this study, the bioluminescent bacteria Vibrio qinghaiensis Q67 was used to detect the single and combined toxicities of BPA and heavy metals, then the joint effects of these contaminants were evaluated. The results show that chronic toxicities of chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), nickel (Ni), and BPA were time–dependent; in fact, the acute toxicities of these contaminants were stronger than the chronic toxicities. Furthermore, the combined toxicities of BPA and heavy metals displayed BPA + Hg > BPA + Cr > BPA + As > BPA + Ni > BPA + Pb > BPA + Cd in the acute test and BPA + Hg > BPA + Cd > BPA + As > BPA + Cd in the chronic test, which suggested that the combined toxicity of BPA and Hg was stronger than that of other mixtures in acute as well as chronic tests. Additionally, both CA and IA models underestimated the toxicities of mixtures at low concentrations but overestimated them at high concentrations, which indicates that CA and IA models were not suitable to predict the toxicities of mixtures of BPA and heavy metals. Moreover, the joint effects of BPA and heavy metals mainly showed antagonism and additive in the context of acute exposure but synergism and additive in the context of chronic exposure. Indeed, the difference in the joint effects on acute and chronic exposure can be explained by the possibility that mixtures inhibited cell growth and luminescence in chronic cultivation. The chronic toxicity of the mixture should be considered if the mixture results in the inhibition of the growth of cells.

Funder

Department of Science and Technology of Guangdong Provience

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3