Current Progress for Retrospective Identification of Nerve Agent Biomarkers in Biological Samples after Exposure

Author:

Wang Jin,Lu Xiaogang,Gao Runli,Pei Chengxin,Wang HongmeiORCID

Abstract

Organophosphorus neurotoxic agents (OPNAs) seriously damage the nervous system, inhibiting AChE activity and threatening human health and life. Timely and accurate detection of biomarkers in biomedical samples is an important means for identifying OPNA exposure, helping to recognize and clarify its characteristics and providing unambiguous forensic evidence for retrospective research. It is therefore necessary to summarize the varieties of biomarkers, recognize their various characteristics, and understand the principal research methods for these biomarkers in the retrospective detection of OPNA exposure. Common biomarkers include mainly intact agents, degradation products and protein adducts. Direct agent identification in basic experimental research was successfully applied to the detection of free OPNAs, however, this method is not applicable to actual biomedical samples because the high reactivity of OPNAs promotes rapid metabolism. Stepwise degradation products are important targets for retrospective research and are usually analyzed using a GC–MS, or an LC–MS system after derivatization. The smaller window of detection time requires that sampling be accomplished within 48 h, increasing the obstacles to determining OPNA exposure. For this reason, the focus of retrospective identification of OPNA exposure has shifted to protein adducts with a longer lifetime. Compared to the fluoride-induced reactivation method, which cannot be used for aged adducts, digestive peptide analysis is the more elegant method for detecting various adducts, identifying more active sites, exploring potential biomarkers and excavating characteristic ions. Retrospective identification of biomarkers after OPNA poisoning is of primary importance, providing unambiguous evidence for forensic analysis in actual cases and judgment of chemical accidents. At present, degradation products, the nonapeptide from BChE adducts and Y411 from human serum adducts are used successfully in actual cases of OPNA exposure. However, more potential biomarkers are still in the discovery stage, which may prove inconclusive. Therefore, there is an urgent need for research that screens biomarker candidates with high reactivity and good reliability from the potential candidates. In addition, mass spectrometry detection with high resolution and reactivity and an accurate data processing system in the scanning mode must also be further improved for the retrospective identification of unknown agents.

Funder

the State Key Laboratory of NBC Protection for Civilian

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3