Improvement of an In-Duct Two-Stage Electrostatic Precipitator via Diffusion Charging

Author:

Kim Ye-Sle,Lee YeawanORCID,Kim Yong-Jin,Han Bangwoo,Kim Hak-JoonORCID

Abstract

An in-duct two-stage electrostatic precipitator (ESP) improved by ion diffusion effect was studied. We increased the collection efficiency of a two-stage electrostatic precipitator without additional energy input by adjusting the space arrangement of the charger and the collector, which increased the particle diffusion charging time. The collection efficiency and the particle charge were systematically investigated according to the occurrence of diffusion charging and electric field charging in the charger as generated by the negative ions. The collection efficiency of the separated two-stage ESP was 39% higher, on average, than the theoretical efficiency at the same power consumption. Through simulation, it was verified that the ions generated in the carbon fiber ionizer penetrated the charger. We proposed a modified charging mechanism assuming that the penetrated ions cause additional particle charge. The optimal separation distance between the charger and the collector, which showed the maximum collection efficiency, was derived through the modified charging model. Therefore, the in-duct two-stage ESP developed in this study is a promising energy-efficient and cost-saving design for indoor air management.

Funder

Korea Agency for Infrastructure Technology Advancement (KAIA) and the Ministry of Land, Infrastructure, and Transport (MOLIT) of the Republic of Korea

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retrofitting of an Air Handling Unit by a Two-Stage Electrostatic Precipitator;IEEE Transactions on Industry Applications;2024-01

2. On-Site Test on Fine Dust Reduction in Subway Station Using Electrostatic Type Air Purifier;2023 IEEE Industry Applications Society Annual Meeting (IAS);2023-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3