Use of Biomarker Data and Relative Potencies of Mutagenic Metabolites to Support Derivation of Cancer Unit Risk Values for 1,3-Butadiene from Rodent Tumor Data

Author:

Kirman Christopher R.,Hays Sean M.

Abstract

Unit Risk (UR) values were derived for 1,3-butadiene (BD) based upon its ability to cause tumors in laboratory mice and rats. Metabolism has been established as the significant molecular initiating event of BD’s carcinogenicity. The large quantitative species differences in the metabolism of BD and potency of critical BD epoxide metabolites must be accounted for when rodent toxicity responses are extrapolated to humans. Previously published methods were extended and applied to cancer risk assessments to account for species differences in metabolism, as well as differences in mutagenic potency of BD metabolites within the context of data-derived adjustment factors (DDEFs). This approach made use of biomarker data (hemoglobin adducts) to quantify species differences in the internal doses of BD metabolites experienced in mice, rats, and humans. Using these methods, the dose–response relationships in mice and rats exhibit improved concordance, and result in upper bound UR values ranging from 2.1 × 10−5 to 1.2 × 10−3 ppm−1 for BD. Confidence in these UR values was considered high based on high confidence in the key studies, medium-to-high confidence in the toxicity database, high confidence in the estimates of internal dose, and high confidence in the dose–response modeling.

Funder

American Chemistry Council

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference74 articles.

1. 1,3-Butadiene, styrene and lymphohaematopoietic cancers among North American synthetic rubber polymer workers: exposure–response analyses

2. 1,3-Butadiene, styrene and selected outcomes among synthetic rubber polymer workers: Updated exposure-response analyses

3. NTP Toxicology and Carcinogenesis Studies of 1,3-Butadiene (CAS No. 106-99-0) in B6C3F1 Mice (Inhalation Studies);Natl. Toxicol. Program Tech. Rep. Ser.,1993

4. Inhalation Toxicity Studies With 1,3-Butadiene 3 Two Year Toxicity/Carcinogenicity Study in Rats

5. 1,3-Butadiene induces cancer in experimental animals at all concentrations from 6.25 to 8000 parts per million;Melnick;IARC Sci. Publ.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3