Nanoplastic Exposure at Predicted Environmental Concentrations Induces Activation of Germline Ephrin Signal Associated with Toxicity Formation in the Caenorhabditis elegans Offspring

Author:

Zhao Yue,Hua Xin,Bian Qian,Wang DayongORCID

Abstract

In nematode Caenorhabditis elegans, exposure to polystyrene nanoparticles (PS-NPs) at predicted environmental concentrations can cause induction of transgenerational toxicity. However, the underlying mechanisms for toxicity formation of PS-NP in the offspring remain largely unknown. In this study, based on high-throughput sequencing, Ephrin ligand EFN-3 was identified as a target of KSR-1/2 (two kinase suppressors of Ras) in the germline during the control of transgenerational PS-NP toxicity. At parental generation (P0-G), exposure to 0.1–10 μg/L PS-NP caused the increase in expression of germline efn-3, and this increase in germline efn-3 expression could be further detected in the offspring, such as F1-G and F2-G. Germline RNAi of efn-3 caused a resistance to transgenerational PS-NP toxicity, suggesting that the activation of germline EFN-3 at P0-G mediated transgenerational PS-NP toxicity. In the offspring, Ephrin receptor VAB-1 was further activated by the increased EFN-3 caused by PS-NP exposure at P0-G, and RNAi of vab-1 also resulted in resistance to transgenerational PS-NP toxicity. VAB-1 acted in both the neurons and the germline to control toxicity of PS-NP in the offspring. In the neurons, VAB-1 regulated PS-NP toxicity by suppressing expressions of DBL-1, JNK-1, MPK-1, and GLB-10. In the germline, VAB-1 regulated PS-NP toxicity by increasing NDK-1 and LIN-23 expressions and decreasing EGL-1 expression. Therefore, germline Ephrin ligand EFN-3 and its receptor VAB-1 acted together to mediate the formation of transgenerational PS-NP toxicity. Our data highlight the important role of activation in germline Ephrin signals in mediating transgenerational toxicity of nanoplastics at predicted environmental concentrations in organisms.

Funder

Shenzhen Basic Research Project

Natural Science Foundations of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference60 articles.

1. Production, use, and fate of all plastics ever made;Sci. Adv.,2017

2. Comparative study on biodegradability of polyethylene wax by bacteria and fungi;Polym. Degrad. Stab.,2004

3. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment;Environ. Sci. Technol. Lett.,2017

4. NJDEP-Science Advisory Board (2022, October 01). Human Health Impacts of Microplastics and Nanoplastics, Available online: https://dep.nj.gov/wp-content/uploads/sab/sab-microplastics-nanoplastics.pdf.

5. Microplastic pollution, a threat to marine ecosystem and human health: A short review;Environ. Sci. Pollut. Res. Int.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3