Hyper-Angle Exploitative Searching for Enabling Multi-Objective Optimization of Fog Computing

Author:

Naser Abdali Taj-AldeenORCID,Hassan RosilahORCID,Mohd Aman Azana HafizahORCID,Nguyen Quang NgocORCID,Al-Khaleefa Ahmed SalihORCID

Abstract

Fog computing is an emerging technology. It has the potential of enabling various wireless networks to offer computational services based on certain requirements given by the user. Typically, the users give their computing tasks to the network manager that has the responsibility of allocating needed fog nodes optimally for conducting the computation effectively. The optimal allocation of nodes with respect to various metrics is essential for fast execution and stable, energy-efficient, balanced, and cost-effective allocation. This article aims to optimize multiple objectives using fog computing by developing multi-objective optimization with high exploitive searching. The developed algorithm is an evolutionary genetic type designated as Hyper Angle Exploitative Searching (HAES). It uses hyper angle along with crowding distance for prioritizing solutions within the same rank and selecting the highest priority solutions. The approach was evaluated on multi-objective mathematical problems and its superiority was revealed by comparing its performance with benchmark approaches. A framework of multi-criteria optimization for fog computing was proposed, the Fog Computing Closed Loop Model (FCCL). Results have shown that HAES outperforms other relevant benchmarks in terms of non-domination and optimality metrics with over 70% confidence of the t-test for rejecting the null-hypothesis of non-superiority in terms of the domination metric set coverage.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3