Modeling and Analysis of System Error for Highly Curved Freeform Surface Measurement by Noncontact Dual-Axis Rotary Scanning

Author:

Miao Li,Zhu Linlin,Fang Changshuai,Yan Ning,Yang Xudong,Zhang Xiaodong

Abstract

Profile measurement is a key technical enabler in the manufacturing of highly curved freeform surfaces due to their complex geometrical shape. A current optical probe was used to measure nearly rotary freeform surfaces with the help of one rotation axis, because the probe needs to measure along the normal vector of the surface under the limitation of the numerical aperture (NA). This kind of measuring system generally has a high cost due to the high-precision, multi-axis platform. In this paper, we propose a low-cost, dual-axis rotation scanning method for a highly curved freeform surface with an arbitrary shape. The optical probe can scan the surface profile while always keeping consistent with the normal vector of the measuring points with the help of the double rotation axis. This method can adapt to the changes in curvature in any direction for a highly curved freeform surface. In addition, the proposed method provides a system error calibration technique for the rotation axis errors. This technique can be used to avoid the dependence of the measuring system on the high-precision platform. The three key system errors that affect the measurement accuracy such as installation error of the B-axis, A-axis, and XZ perpendicularity error are first analyzed through establishing an error model. Then, the real error values are obtained by the optimal calculation in the calibration process. Finally, the feasibility of the measurement method is verified by measuring one cone mirror and an F-theta mirror and comparing the results to those obtained using commercial equipment. The maximum measurable angle of the system is ±90°, the maximum measurable diameter is 100 mm, and the measurement accuracy of the system reaches the micron level in this paper.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3