Abstract
Human activity type inference has long been the focus for applications ranging from managing transportation demand to monitoring changes in land use patterns. Today’s ever increasing volume of mobility data allow researchers to explore a wide range of methodological approaches for this task. Such data, however, lack reference observations that would allow the validation of methodological approaches. This research proposes a methodological framework for urban activity type inference using a Dirichlet multinomial dynamic Bayesian network with an empirical Bayes prior that can be applied to mobility data of low spatiotemporal resolution. The method was validated using open source Foursquare data under different isochrone configurations. The results provide evidence of the limits of activity detection accuracy using such data as determined by the Area Under Receiving Operating Curve (AUROC), log-loss, and accuracy metrics. At the same time, results demonstrate that a hierarchical modeling framework can provide some flexibility against the challenges related to the nature of unsupervised activity classification using trajectory variables and POIs as input.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献