An Experimental Research on the Use of Recurrent Neural Networks in Landslide Susceptibility Mapping

Author:

Mutlu BegumORCID,Nefeslioglu Hakan A.ORCID,Sezer Ebru A.ORCID,Akcayol M. AliORCID,Gokceoglu CandanORCID

Abstract

Natural hazards have a great number of influencing factors. Machine-learning approaches have been employed to understand the individual and joint relations of these factors. However, it is a challenging process for a machine learning algorithm to learn the relations of a large parameter space. In this circumstance, the success of the model is highly dependent on the applied parameter reduction procedure. As a state-of-the-art neural network model, representative learning assumes full responsibility of learning from feature extraction to prediction. In this study, a representative learning technique, recurrent neural network (RNN), was applied to a natural hazard problem. To that end, it aimed to assess the landslide problem by two objectives: Landslide susceptibility and inventory. Regarding the first objective, an empirical study was performed to explore the most convenient parameter set. In landslide inventory studies, the capability of the implemented RNN on predicting the subsequent landslides based on the events before a certain time was investigated respecting the resulting parameter set of the first objective. To evaluate the behavior of implemented neural models, receiver operating characteristic analysis was performed. Precision, recall, f-measure, and accuracy values were additionally measured by changing the classification threshold. Here, it was proposed that recall metric be utilized for an evaluation of landslide mapping. Results showed that the implemented RNN achieves a high estimation capability for landslide susceptibility. By increasing the network complexity, the model started to predict the exact label of the corresponding landslide initiation point instead of estimating the susceptibility level.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3