Optimization of Shortest-Path Search on RDBMS-Based Graphs

Author:

Seo Kwangwon,Ahn JinhyunORCID,Im Dong-HyukORCID

Abstract

Calculation of the shortest path between two nodes in a graph is a popular operation used in graph queries in applications such as map information systems, social networking services, and biotechnology. Recent shortest-path search techniques based on graphs stored in relational databases are able to calculate the shortest path efficiently, even in large data using frontier-expand-merge operations. However, previous approaches used a sequential bidirectional search method that causes a bottleneck, thus degrading performance. The repeated use of an aggregate SQL function also degrades performance. This paper proposes a parallel bi-directional search method using multithreading. In addition, an efficient optimization method is proposed that uses B-tree indexing instead of an aggregate SQL function. Various experiments using synthetic and real data reveal that the proposed optimization technique performs more efficiently than conventional methods. As the size of data in practical applications continues to grow, these optimizations will enable the shortest path in a graph to be found quickly and accurately.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference25 articles.

1. A note on two problems in connexion with graphs

2. Shortest path computing in relational DBMSs;Gao;IEEE Trans. Knowl. Data Eng.,2013

3. Disk-based shortest path discovery using distance index over large dynamic graphs

4. Speed-up techniques for shortest-path computations;Wagner,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3