Assessing the Distribution of Heavy Industrial Heat Sources in India between 2012 and 2018

Author:

Ma Caihong,Niu ZhengORCID,Ma Yan,Chen Fu,Yang Jin,Liu Jianbo

Abstract

The heavy industry in India has witnessed rapid development in the past decades. This has increased the pressures and load on the Indian environment, and has also had a great impact on the world economy. In this study, the Preparatory Project Visible Infrared Imaging Radiometer (NPP VIIRS) 375-m active fire product (VNP14IMG) and night-time light (NTL) data were used to study the spatiotemporal patterns of heavy industrial development in India. We employed an improved adaptive K-means algorithm to realize the spatial segmentation of long-term VNP14IMG data and artificial heat-source objects. Next, the initial heavy industry heat sources were distinguished from normal heat sources using a threshold recognition model. Finally, the maximum night-time light data were used to delineate the final heavy industry heat sources. The results suggest, that this modified method is a much more accurate and effective way of monitoring heavy industrial heat sources, and the accuracy of this detection model was higher than 92.7%. The number of main findings were concluded from the study: (1) the heavy industry heat sources are mainly concentrated in the north-east Assam state, east-central Jharkhand state, north Chhattisgarh and Odisha states, and the coastal areas of Gujarat and Maharashtra. Many heavy industrial heat sources were also found around a line from Kolkata on the Eastern Indian Ocean to Mumbai on the Western Indian Ocean. (2) The number of working heavy industry heat sources (NWH) and, particularly, the total number of fire hotspots for each working heavy industry heat source area (NFHWH) are continuing to increase in India. These trends mirror those for the Gross Domestic Product (GDP) and total population of India between 2012 and 2017. (3) The largest values of NWH and NFHWH were in Jharkhand, Chhattisgarh, and Odisha whereas the smallest negative values, the S l o p e _ N W H in Jharkhand and Chhattisgarh were also the two largest values in the whole country. The smallest negative values of S l o p e _ N W H and S l o p e _ N F H W H were in Haryana. The S l o p e _ N F H W H in the mainland Gujarat had the second most negative value, while the value of the S l o p e _ N W H was the third-highest positive value.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of steel plant segmentation and temperature distribution changes in Tangshan City;Fifth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2024);2024-07-10

2. Annual dynamics of global remote industrial heat sources dataset from 2012 to 2021;Scientific Data;2024-06-14

3. National-scale nighttime high-temperature anomalies from Landsat-8 OLI images;ISPRS Journal of Photogrammetry and Remote Sensing;2024-06

4. Estimating carbon emissions from thermal power plants based on thermal characteristics;International Journal of Applied Earth Observation and Geoinformation;2024-04

5. Identification of Industrial Heat Source Production Areas Based on SDGSAT-1 Thermal Infrared Imager;Applied Sciences;2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3