Abstract
The heavy industry in India has witnessed rapid development in the past decades. This has increased the pressures and load on the Indian environment, and has also had a great impact on the world economy. In this study, the Preparatory Project Visible Infrared Imaging Radiometer (NPP VIIRS) 375-m active fire product (VNP14IMG) and night-time light (NTL) data were used to study the spatiotemporal patterns of heavy industrial development in India. We employed an improved adaptive K-means algorithm to realize the spatial segmentation of long-term VNP14IMG data and artificial heat-source objects. Next, the initial heavy industry heat sources were distinguished from normal heat sources using a threshold recognition model. Finally, the maximum night-time light data were used to delineate the final heavy industry heat sources. The results suggest, that this modified method is a much more accurate and effective way of monitoring heavy industrial heat sources, and the accuracy of this detection model was higher than 92.7%. The number of main findings were concluded from the study: (1) the heavy industry heat sources are mainly concentrated in the north-east Assam state, east-central Jharkhand state, north Chhattisgarh and Odisha states, and the coastal areas of Gujarat and Maharashtra. Many heavy industrial heat sources were also found around a line from Kolkata on the Eastern Indian Ocean to Mumbai on the Western Indian Ocean. (2) The number of working heavy industry heat sources (NWH) and, particularly, the total number of fire hotspots for each working heavy industry heat source area (NFHWH) are continuing to increase in India. These trends mirror those for the Gross Domestic Product (GDP) and total population of India between 2012 and 2017. (3) The largest values of NWH and NFHWH were in Jharkhand, Chhattisgarh, and Odisha whereas the smallest negative values, the S l o p e _ N W H in Jharkhand and Chhattisgarh were also the two largest values in the whole country. The smallest negative values of S l o p e _ N W H and S l o p e _ N F H W H were in Haryana. The S l o p e _ N F H W H in the mainland Gujarat had the second most negative value, while the value of the S l o p e _ N W H was the third-highest positive value.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献